\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [1538]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 720 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b^3 \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {\left (8 A b^2-a b (12 B-5 C)+15 a^2 C-2 b^2 (2 B+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^3 \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} \left (8 A b^2-12 a b B+15 a^2 C+4 b^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^4 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b^3 \left (a^2-b^2\right ) d} \]

[Out]

-2*(A*b^2-a*(B*b-C*a))*sin(d*x+c)/b/(a^2-b^2)/d/sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2)+1/2*(4*A*b^2-4*B*a*b+5
*C*a^2-C*b^2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b^2/(a^2-b^2)/d/sec(d*x+c)^(1/2)+1/4*(12*B*a^2*b-4*B*b^3-a*b^2
*(8*A-7*C)-15*a^3*C)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)/b^3/(a^2-b^2)/d-1/4*(12*B*a^2*b-4*B*b^
3-a*b^2*(8*A-7*C)-15*a^3*C)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(
a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b^3/d/(a+b)^(1/2
)/sec(d*x+c)^(1/2)-1/4*(8*A*b^2-a*b*(12*B-5*C)+15*a^2*C-2*b^2*(2*B+C))*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(
1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+
sec(d*x+c))/(a-b))^(1/2)/b^3/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)-1/4*(8*A*b^2-12*B*a*b+15*C*a^2+4*C*b^2)*csc(d*x+c)
*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(
d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 2.55 (sec) , antiderivative size = 720, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4306, 3126, 3128, 3140, 3132, 2888, 3077, 2895, 3073} \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \left (15 a^2 C-12 a b B+8 A b^2+4 b^2 C\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{4 b^4 d \sqrt {\sec (c+d x)}}-\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left (15 a^2 C-a b (12 B-5 C)+8 A b^2-2 b^2 (2 B+C)\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{4 b^3 d \sqrt {a+b} \sqrt {\sec (c+d x)}}-\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}+\frac {\sin (c+d x) \left (5 a^2 C-4 a b B+4 A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)}}{2 b^2 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}-\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left (-15 a^3 C+12 a^2 b B-a b^2 (8 A-7 C)-4 b^3 B\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 a b^3 d \sqrt {a+b} \sqrt {\sec (c+d x)}}+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \left (-15 a^3 C+12 a^2 b B-a b^2 (8 A-7 C)-4 b^3 B\right ) \sqrt {a+b \cos (c+d x)}}{4 b^3 d \left (a^2-b^2\right )} \]

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/((a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]

[Out]

-1/4*((12*a^2*b*B - 4*b^3*B - a*b^2*(8*A - 7*C) - 15*a^3*C)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[S
qrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*b^3*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]]) - ((8*A*b^2 - a*b*(12*B -
 5*C) + 15*a^2*C - 2*b^2*(2*B + C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/
(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c
 + d*x]))/(a - b)])/(4*b^3*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]]) - (Sqrt[a + b]*(8*A*b^2 - 12*a*b*B + 15*a^2*C + 4
*b^2*C)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqr
t[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b
)])/(4*b^4*d*Sqrt[Sec[c + d*x]]) - (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Cos[c
+ d*x]]*Sec[c + d*x]^(3/2)) + ((4*A*b^2 - 4*a*b*B + 5*a^2*C - b^2*C)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2
*b^2*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]) + ((12*a^2*b*B - 4*b^3*B - a*b^2*(8*A - 7*C) - 15*a^3*C)*Sqrt[a + b*Cos
[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*b^3*(a^2 - b^2)*d)

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3140

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[
e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[1/(2*d), Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Si
n[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d)
)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{3/2}} \, dx \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} \left (\frac {3}{2} \left (A b^2-a (b B-a C)\right )+\frac {1}{2} b (b B-a (A+C)) \cos (c+d x)-\frac {1}{2} \left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a \left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right )+\frac {1}{2} b \left (2 A b^2-2 a b B+a^2 C+b^2 C\right ) \cos (c+d x)-\frac {1}{4} \left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{b^2 \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b^3 \left (a^2-b^2\right ) d}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} a \left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right )-\frac {1}{2} a b \left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \cos (c+d x)-\frac {1}{4} \left (a^2-b^2\right ) \left (8 A b^2-12 a b B+15 a^2 C+4 b^2 C\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b^3 \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b^3 \left (a^2-b^2\right ) d}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} a \left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right )-\frac {1}{2} a b \left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b^3 \left (a^2-b^2\right )}+\frac {\left (\left (8 A b^2-12 a b B+15 a^2 C+4 b^2 C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 b^3} \\ & = -\frac {\sqrt {a+b} \left (8 A b^2-12 a b B+15 a^2 C+4 b^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^4 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b^3 \left (a^2-b^2\right ) d}-\frac {\left (a \left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b^3 \left (a^2-b^2\right )}-\frac {\left (a (a-b) \left (8 A b^2-a b (12 B-5 C)+15 a^2 C-2 b^2 (2 B+C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{8 b^3 \left (a^2-b^2\right )} \\ & = -\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b^3 \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {\left (8 A b^2-a b (12 B-5 C)+15 a^2 C-2 b^2 (2 B+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^3 \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} \left (8 A b^2-12 a b B+15 a^2 C+4 b^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^4 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (4 A b^2-4 a b B+5 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (12 a^2 b B-4 b^3 B-a b^2 (8 A-7 C)-15 a^3 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b^3 \left (a^2-b^2\right ) d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(2438\) vs. \(2(720)=1440\).

Time = 18.90 (sec) , antiderivative size = 2438, normalized size of antiderivative = 3.39 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Result too large to show} \]

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/((a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*(A*b^2 - a*b*B + a^2*C)*Sin[c + d*x])/(b^3*(a^2 - b^2)) + (
2*(a^2*A*b^2*Sin[c + d*x] - a^3*b*B*Sin[c + d*x] + a^4*C*Sin[c + d*x]))/(b^3*(-a^2 + b^2)*(a + b*Cos[c + d*x])
) + (C*Sin[2*(c + d*x)])/(4*b^2)))/d - (Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c
 + d*x)/2]^2)]*(8*a^2*A*b^2*Tan[(c + d*x)/2] + 8*a*A*b^3*Tan[(c + d*x)/2] - 12*a^3*b*B*Tan[(c + d*x)/2] - 12*a
^2*b^2*B*Tan[(c + d*x)/2] + 4*a*b^3*B*Tan[(c + d*x)/2] + 4*b^4*B*Tan[(c + d*x)/2] + 15*a^4*C*Tan[(c + d*x)/2]
+ 15*a^3*b*C*Tan[(c + d*x)/2] - 7*a^2*b^2*C*Tan[(c + d*x)/2] - 7*a*b^3*C*Tan[(c + d*x)/2] - 16*a*A*b^3*Tan[(c
+ d*x)/2]^3 + 24*a^2*b^2*B*Tan[(c + d*x)/2]^3 - 8*b^4*B*Tan[(c + d*x)/2]^3 - 30*a^3*b*C*Tan[(c + d*x)/2]^3 + 1
4*a*b^3*C*Tan[(c + d*x)/2]^3 - 8*a^2*A*b^2*Tan[(c + d*x)/2]^5 + 8*a*A*b^3*Tan[(c + d*x)/2]^5 + 12*a^3*b*B*Tan[
(c + d*x)/2]^5 - 12*a^2*b^2*B*Tan[(c + d*x)/2]^5 - 4*a*b^3*B*Tan[(c + d*x)/2]^5 + 4*b^4*B*Tan[(c + d*x)/2]^5 -
 15*a^4*C*Tan[(c + d*x)/2]^5 + 15*a^3*b*C*Tan[(c + d*x)/2]^5 + 7*a^2*b^2*C*Tan[(c + d*x)/2]^5 - 7*a*b^3*C*Tan[
(c + d*x)/2]^5 - 16*a^2*A*b^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x
)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 16*A*b^4*EllipticPi[-1, ArcSin[T
an[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c
 + d*x)/2]^2)/(a + b)] + 24*a^3*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c
 + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 24*a*b^3*B*EllipticPi[-1,
ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 -
b*Tan[(c + d*x)/2]^2)/(a + b)] - 30*a^4*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 22*a^2*b^2*C*Ellipti
cPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)
/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 8*b^4*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sq
rt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 16*a^2*A*b^2*
EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqr
t[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 16*A*b^4*EllipticPi[-1, ArcSin[Tan[(c + d*x
)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 -
b*Tan[(c + d*x)/2]^2)/(a + b)] + 24*a^3*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c
+ d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] -
 24*a*b^3*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*
x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 30*a^4*C*EllipticPi[-1, ArcSin[
Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c +
d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 22*a^2*b^2*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a
 + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]
^2)/(a + b)] + 8*b^4*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (a + b)*(-12*a^2*b*B
 + 4*b^3*B + a*b^2*(8*A - 7*C) + 15*a^3*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[
(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] -
 2*b*(a + b)*(4*A*b^2 + 5*a^2*C + 2*b^2*C - a*b*(4*B + 3*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a +
 b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x
)/2]^2)/(a + b)]))/(4*b^3*(a^2 - b^2)*d*(-1 + Tan[(c + d*x)/2]^2)*Sqrt[(1 + Tan[(c + d*x)/2]^2)/(1 - Tan[(c +
d*x)/2]^2)]*(b*(-1 + Tan[(c + d*x)/2]^2) - a*(1 + Tan[(c + d*x)/2]^2)))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(6364\) vs. \(2(662)=1324\).

Time = 12.68 (sec) , antiderivative size = 6365, normalized size of antiderivative = 8.84

method result size
parts \(\text {Expression too large to display}\) \(6365\)
default \(\text {Expression too large to display}\) \(6985\)

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x
 + c) + a^2)*sec(d*x + c)^(3/2)), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(3/2)), x)